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In this paper we study the transient surface cavity which is created by the controlled
impact of a disk of radius h0 on a water surface at Froude numbers below 200.
The dynamics of the transient free surface is recorded by high-speed imaging and
compared to boundary integral simulations giving excellent agreement. The flow
surrounding the cavity is measured with high-speed particle image velocimetry and is
found to also agree perfectly with the flow field obtained from the simulations.

We present a simple model for the radial dynamics of the cavity based on the
collapse of an infinite cylinder. This model accounts for the observed asymmetry of
the radial dynamics between the expansion and the contraction phases of the cavity.
It reproduces the scaling of the closure depth and total depth of the cavity which
are both found to scale roughly as ∝ Fr1/2 with a weakly Froude-number-dependent
prefactor. In addition, the model accurately captures the dynamics of the minimal
radius of the cavity and the scaling of the volume Vbubble of air entrained by the
process, namely, Vbubble/h3

0 ∝ (1 + 0.26Fr1/2)Fr1/2.

1. Introduction
A spectacular example of free surface flow is the impact of an object on a

liquid: the impact creates a splash and a transient cavity. This surface cavity then
violently collapses under the influence of the hydrostatic pressure. At the singularity
where the walls of the cavity collide, two powerful jets develop, one downwards and
the other one upwards up to several metres high, making this fast event an impressive
scene. Research into the physics of these transient surface cavities started at the
beginning of the 20th century when A. M. Worthington published his famous
work ‘A study of splashes’ (Worthington 1908). His photographs revealed a wealth
of phenomena of unanticipated complexity (Worthington & Cole 1897). Although
much has been contributed to the understanding of these phenomena, many of the
intriguing questions posed by Worthington’s photographs resonate till today (Rein
1993; Fedorchenko & Wang 2004).

All investigations since Worthington’s studies entailed experiments with a freely
falling object impacting on the free surface. To gain further insight into such impact
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events, we built a setup in which we attach the impacting object to a linear motor.
In this way we gain full control over the impact velocity, which now turns from a
response observable into the key control parameter of the system.

The dynamics of a surface cavity are of enormous practical importance in many
natural and industrial processes. Raindrops falling onto the ocean entrain air (Oguz &
Prosperetti 1990; Oguz, Prosperetti & Kolaini 1995; Prosperetti & Oguz 1997)
and it is this mechanism which is one of the major sinks of carbon dioxide
from the atmosphere. Droplet impact and the subsequent void collapse are also
a significant source of underwater sound (Prosperetti, Crum & Pumphrey 1989) and
a thorough understanding is therefore crucial in sonar research. High-speed-water
impacts and underwater cavity formation are moreover of relevance to military
operations (Gilbarg & Anderson 1948; Lee, Longoria & Wilson 1997; Duclaux et al.
2007; Aristoff & Bush 2009). In the context of industrial applications, drop impact
and the subsequent void formation are crucial in pyrometallurgy (Liow et al. 1996;
Morton, Liow & Rudman 2000), in the food industry, and in the context of ink-jet
printing (Le 1998; Chen & Basaran 2002; de Jong et al. 2006a, b). A similar series of
events as in water can even be observed when a steel ball impacts on very fine and
soft sand (Thoroddsen & Shen 2001; Lohse et al. 2004; Royer et al. 2005; Caballero
et al. 2007).

Although in some of the literature the deceleration of the impacting body was
minimized by choosing the properties of the body such that the velocity of the
impactor remained roughly constant during the time the cavity dynamics were
observed (Glasheen & McMahon 1996; Gaudet 1998), the velocity of the body
nevertheless remained a response parameter set by the system. Our use of a linear
motor to accurately control the position, velocity and acceleration of the impacting
object constitutes the key difference between our work (see also Bergmann et al. 2006;
Gekle et al. 2008, 2009) and all previous literature.

In this paper, we will use observations from experiments and boundary integral
simulations to construct a model which accurately describes the radial dynamics of
the cavity. In § 2 we present results from our controlled experiment and compare
them to the boundary integral simulations. More specifically, in § 2.3 we discuss
the dynamics of the free surface and continue in § 2.4 with the topology and
magnitude of the flow surrounding the cavity obtained by particle image velocimetry
(PIV).

In § 3 we will derive a model which captures the radial dynamics of the cavity.
We will use the model to investigate the following key characteristics of the transient
surface cavity. First, the depth at which the pinch-off will occur is discussed in § 4.1.
Second, in § 4.2 the amount of air entrained by the cavity collapse is studied. In both
subsections, experiments and simulations are compared to the model results. The
paper is concluded in § 5.

2. Experimental and numerical results
2.1. Experimental setup and procedure

A sketch of the setup is seen in figure 1(a). A steel disk of radius h0 is mounted on
top of a thin rod (� 6 mm). The rod runs through a seal in the bottom of a large tank
(500 mm × 500 mm × 1000 mm) and is connected at the lower end to a Thrusttube
linear motor which is used to determine and control the velocity and acceleration of
the disk. The position of the motor (and thus of the disk) along the vertical axis is
measured with a spatial accuracy of 5 μm over a range of 1 m, the large acceleration
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Figure 1. (a) Schematic illustration of the experimental setup with the linear motor controlling
the rod and disk. The vertical rod runs through a seal in the bottom of the glass water tank
and is pulled down by the linear motor in order to impact the disk on the water surface. Here,
h0 is the radius and V the controlled and constant velocity of the disk. (b) The formation of
an upward and downward jet after the cavity has closed. In the present study we will focus
on the cavity dynamics until pinch-off, just before the jet formation.

of the motor (up to 30g, with g the gravitational acceleration) makes it possible to
perform impact experiments with constant velocities up to 5 m s−1.

The disk has a thickness of 2.0 mm and its sides are smoothly machined. In all
experiments presented in this paper, the water is found to separate at the bottom 90◦

corner of the disk and not to wet the disk’s small vertical sides. The effect of the
small diameter of the rod on the global flow and dynamics of the cavity is assumed
to be negligible. As the minimum radius for the disk used in the experiments is 10
mm, the ratio of the cross-sectional area of the rod and the surface of the disk is
always smaller than 9 %. Since the rod is mounted in the centre of the disk, where
stagnation would normally occur, the influence on the radially outward flow below
the disk is presumably small.

Using the flat-plate approximation, we can also estimate the direct contribution of
the boundary layer of the rod to the axial flow. The boundary layer thickness δ for a
flat plate is given by Blasius’ solution δ ≈ 5

√
ν�t , where ν is the kinematic viscosity

of water and �t the time which the boundary layer has to develop. We will equate
the time �t to the duration of the experiment, namely, to the time interval starting
from the impact of the disk until the collapse of the void, which in our experiments
is found to scale as �timpact ≈ 2.2

√
h0/g, as will be discussed in detail in § 4.1. For

the largest disk size in the experiment h0 = 40 mm, this result predicts a maximum
boundary layer thickness of 1.8 mm. Under most experimental conditions of this
study it is considerably thinner.

In our experiments we pull the disk down with a constant velocity V . Making this
main control parameter dimensionless, we obtain the Froude number Fr = V 2/(gh0).
The liquid properties are expressed in terms of the Reynolds number Re =V h0/ν

and the Weber number We = ρV 2h0/σ , where σ denotes the surface tension and ρ

the fluid density. Since the Reynolds number and the Weber number are large on the
scales of our experiment (figure 1), viscosity and surface tension do not seem to play
a role. To be more precise, in our experiment the Reynolds number ranges between
500 and 1.6 × 104 and the Weber number ranges between 34 and 8.8 × 103. Note
however that under only slightly different conditions, namely, replacing the disk by a
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cylinder submerged in water to avoid the splash, capillary waves do play a role (see
Gekle et al. 2008). For the impact of a disk we find the only important dimensionless
parameter to be the Froude number, i.e. the ratio of kinetic to gravitational energy,
which ranges from 0.6 to 200 in our experiments. It is convenient to use the amount
of time τ remaining until cavity collapse which is given by τ = tcoll − t with tcoll the
collapse time.

A last consideration is the recirculation time. The impact takes place in a tank of
finite size L and one expects that if the recirculation time becomes of the same order
as the impact duration, the results will be influenced. The recirculation time can be
estimated as the time a fluid particle of velocity V – set into motion by the disk –
needs to move to the wall and back to the impact area, i.e. �tcirc ≈ 2(L/2)/V . As
mentioned above, the duration of the impact can be estimated as �timpact ≈ 2.2

√
h0/g.

The condition �tcirc >�timpact now leads to Fr< (1/2.2)2(L/h0)
2 ≈ 0.21(L/h0)

2. In the
worst case, namely when the largest disk (h0 = 0.04 m) is used, this amounts to
Fr < 32, which is much larger than all experimentally attainable values for this disk
size. The same conclusion can be drawn for the other disk sizes from a similar
calculation.

The limitations of our experimental setup provide a second reason why recirculation
is not a concern: the maximum distance Z the disk can travel at constant velocity in
our experiment is smaller than L, as the tank is typically filled to a height of 600 mm
(= 1.2L), but a considerable distance is needed to decelerate the disk at the employed
high impact velocities. This means that there is an experimental upper bound for
the duration of the impact set by �texp = Z/V <L/V <�tcirc which confirms that
recirculation does not affect our experiment.

2.2. Numerical method

The numerical calculations are performed using a boundary integral method (Oguz
& Prosperetti 1993; Power & Wrobel 1995; Prosperetti 2002) based on potential flow.
This assumption excludes viscous effects and vorticity, which due to the short duration
of the phenomenon and the high Reynolds number seems reasonable. The boundary
integral formulation would allow for the inclusion of air as a second ideal fluid phase,
but as the air creates secondary effects which are not the subject of this study we
have opted to leave it out. These secondary effects include the Kelvin–Helmholtz
instability in the last stages of the pinch-off (Bergmann et al. 2006) and the surface
seal at high impact speeds. The surface seal in the experiment is discussed in the next
section.

Our code uses an axisymmetric geometry thus reducing the surface integrals to
one-dimensional line integrals. For the time-stepping an iterative Crank–Nicholson
scheme is employed. The size of each time step is calculated as tstep = f min(tnode) with
tnode = �s/vnode , where �s is the distance to the neighbouring node and vnode the local
velocity. With the safety factor f chosen to be 5 % this procedure reliably prevents
collisions of two nodes which would lead to serious disturbances in the numerical
scheme. The number of nodes is variable in time, with the node density at any
particular point on the surface being a function of the local curvature. This procedure
guarantees that in regions with large curvatures, especially around the pinch-off
point, the node density is always high enough to resolve the local details of the
surface shape. At the same time, no computation power is wasted on an exceedingly
high node density in flat regions towards infinity (which in our simulations is chosen
to be 100 disk radii away from the central axis; note that the bounding container of



Controlled impact of a disk on a water surface 385

the experiments is not included in the simulations.) To avoid numerical disturbances,
we employ a regridding scheme in which at every second time step the surface nodes
are completely redistributed placing the new nodes exactly half-way between the old
nodes.

A particularly sensitive issue is the modelling of the crown-shaped splash created
when the disk impacts the water surface. After first shooting upwards in a ring shape,
the splash quickly breaks up into a large number of drops (which are ring shaped
due to the imposed axial symmetry). These drops do not further influence the cavity
behaviour and therefore need not be accounted for in our numerical code. In most
simulations presented in this work, the crown-shaped splash evolves normally until
drop pinch-off. As this happens, the surface is reconnected at the pinch-off location
and the drop is discarded.

2.3. Interface

The series of events typical for the experimental range of 1 <Fr < 100 is seen in the
snapshots of figures 2(a), 2(b) and 2(c). Upon impact, an outward moving crown of
water (the splash) is formed. A void is created which collapses due to the hydrostatic
pressure and a singularity arises when the collapsing walls of the void collide with
each other. Two jets emerge in this experiment: one upwards straight into the air,
and one downwards into the entrained air bubble (see figure 1b).

In each of figures 2(a), 2(b) and 2(c) the experimental sequence is overlaid with
the results of our boundary integral simulation. For Fr = 0.85 and Fr = 3.4 (figures 2a
and 2b), the cavity dynamics is found to be captured extremely well by the numerical
result, represented by the overlaid lines. Note that this is a one-to-one comparison
between simulation and experiment, without any rescaling in time or space. Due to
the axisymmetry of the code it is not possible to capture the full details of the splash,
and since our focus is on the cavity dynamics we chose to simply take out any droplet
which is released from the splash in the simulations. Surface tension however still
expresses itself in small capillary waves in the region of the splash. These waves are
most notable in figure 2(a). As was mentioned before, similar capillary waves (but
from a different origin) are found to have a significant influence on the closure of the
cavity for a submerging cylinder (Gekle et al. 2008). For the impacting disk discussed
in this paper however they do not affect the closure.

The results for Fr= 0.85 in figure 2(a) illustrate the effect of the relative importance
of gravity. In the last frame of figure 2(a) it can be seen that the cavity is less symmetric
in the axial direction around the closure point compared to the experiment performed
at Fr = 3.4 shown in figure 2(b). In the third sequence at Fr= 13.6 (figure 2c), which
goes beyond the experimental Froude number range described in Bergmann et al.
(2006), significant deviations between the experimental and the numerical cavity shape
are found, most notably in the enlargement of figure 3 at the depth of the cavity
closure. The closure of the cavity is found to be somewhat deeper in the numerics as
compared to the experiments. This deviation can be attributed to a secondary effect
due to the surrounding air, called the surface seal (see figure 4). This phenomenon
was first reported by Worthington (1908) and later investigated in more detail by
Gilbarg & Anderson (1948). Note that the impact experiment of figure 4 is performed
under the same conditions as depicted in figure 2(c). The cause for the surface seal is
the air which flows into the expanding cavity and influences the splash. If the airflow
is strong enough the initially outward moving splash will be sucked in towards the



386 R. Bergmann, D. van der Meer, S. Gekle, A. van der Bos and D. Lohse

(a)

(b)

(c)

(d)

τ = 61 ms

τ = 74 ms τ = 27 ms

τ = 17 msτ = 62 ms

τ = 60 ms τ = 16 ms τ = 1 ms

τ = 1 ms

τ = 1 ms

τ = 14 ms τ = 1 ms

Figure 2. Snapshots of the formation and collapse of a surface void in the plunger experiment.
A linear motor pulls down a disk of radius h0 = 30 mm through the water surface at a constant
velocity. (a) For V = 0.5 m s−1, i.e. Fr = 0.85. The total duration �t of the experiment is 129 ms
from the moment of impact to the pinch-off; (b) for V = 1.0 m s−1 (Fr = 3.4, �t = 133 ms);
(c) for V = 2.0 m s−1 (Fr = 13.6, �t = 137 ms) and (d ) for Fr =200 (�t = 148 ms). The
collapse of the void is imaged at 1000 frames s−1. The lines (overlay) are the void profiles
obtained from boundary integral simulations. Without the use of any free parameter, neither
in time nor in space, an excellent agreement between the simulation and experiment is found
in (a) and (b). Due to a (mild) surface seal there is a discrepancy between the simulations and
the experiment in sequence (c), both in the top region near the splash and in the pinch-off
region. The region of the dashed box is shown enlarged in figure 3. The conditions of (d ) are
outside the experimental range due to the combination of the limited size of the tank and
finite deceleration of the linear motor.
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20 mm

Figure 3. Enlargement of the region around the pinch-off point at τ = 1 ms from the sequence
(figure 2c) (Fr = 13.6). A significant discrepancy can be seen for the depth of the pinch-off
between the boundary integral simulation (white line) and the experimental recording. The
origin of this discrepancy is the airflow in the cavity as will be elaborated elsewhere.

τ = 126 ms τ = 101 ms τ = 62 ms τ = 17 ms τ = 1 ms

Figure 4. Snapshots of the surface seal which occurs for a disk of radius h0 = 30 mm impact-
ing the water surface at a constant velocity of V = 2.0 m s−1 (Fr = 13.6), i.e. under the same
conditions as figure 2(c).

axis of symmetry and eventually completely seal off the top of the cavity at the
undisturbed water surface level.

The surface seal is found to become more pronounced at higher impact velocity,
where it occurs earlier and more liquid is involved in the closure. Accordingly, there
is also a larger influence on the shape of the cavity at higher impact velocity. Since
this paper aims to treat the purely pressure-driven collapse of the cavity, without
the contributions of the surrounding air, our experimental range is limited by the
occurrence of the surface seal. In the simulations we therefore intentionally do not
include the air. This explains the discrepancy of figure 2(c) (enlarged in figure 3),
since contrary to the experiments, no surface seal occurs in the numerics due to the
absence of air. In figure 2(d ) we go far beyond the experimentally available range by
performing simulations at a Froude number of 200.

It is instructive to compare the present boundary integral simulation results with
those reported by Gaudet (1998), who reported a bulging contraction of the cavity at
the surface level. He found this contraction to close for Fr � 200 and interpreted it as
a surface seal in the absence of air. We found no evidence for such a surface seal in
our simulations, even for considerably larger Froude numbers, and surmise that the
effect reported by Gaudet (1998) may be connected to using an insufficient number
of nodes in the splash region caused by the limited amount of computational power
available at that time.
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2.4. Flow field

In the previous subsection we found the experimental shape of the impact cavity to
be well described by our boundary integral simulations if no surface seal occurs. The
question we will address in this subsection is whether the simulations also give an
accurate description of the surrounding flow field. To this end we will measure the
velocity field around the transient cavity through high-speed PIV. These experiments
are crucial to check the validity of the boundary integral simulations, as the presence
of a solid boundary, namely the impacting object, will induce vorticity in the flow. We
will compare the experimental flow field to the boundary integral results and finally
investigate the radial flow at the depth of closure in more detail.

To perform the PIV measurements, the fluid is seeded with small DANTEC
Dynamics polyamid tracer particles of radius 25 μm and density 1030 kg m−3

which follow the flow. A laser sheet shines from the side through the fluid, creating an
illuminated plane through the symmetry axis of the cavity. The light scattered by the
particles is captured by a high-speed camera at a frame rate of 6000 frames s−1 and
a resolution of 1024 × 512 pixels. The series of recorded images is then correlated by
multipass algorithms, using DaVis PIV software by LaVision, in order to determine
the flow field in a plane in the liquid. The correlation was performed in two passes
at subpixel accuracy, using 64 × 64 pixels and 32 × 32 pixels interrogation windows.
The windows overlap by 50 %, resulting in one velocity vector every 16 × 16 pixels.

In order to obtain high-resolution PIV measurements of the flow around the cavity,
we made use of the reproducibility of the experiment. The left side of each of the
images of figure 5 shows the flow around the expanding void by combining the
results of four separate PIV measurements at different depths. In this fashion PIV
experiments were performed for a field of view of 96 mm × 56 mm at a spatial
resolution of 0.9 mm (in figure 5 only 0.7 % of the measured vector field is shown).
This high resolution makes it possible to simultaneously compare the global flow, as
well as the smaller flow structures at the pinch-off depth and the disk’s edge.

The right side of each image of figure 5 shows the numerically obtained cavity
profile and flow field. In figure 6 one of them, namely figure 5(c), is shown for
more detailed comparison. At first sight there appears to be a good agreement, but
one would like to obtain a more quantitative comparison between experiment and
simulation. This is provided in figure 7, which shows contour plots of the axial
flow component (figure 7a–d ) and the radial flow component (figure 7e,f ) obtained
from the PIV measurements (at the left side of each image) and boundary integral
simulations (at the right side of each image). From this figure it is clear that the
magnitude as well as the topology of the flow are in excellent agreement. Figures 5
and 7 are a one-to-one comparison between simulation and experiment, and we stress
once more, without the use of any free parameter.

In addition to the above, the experimental pictures of figure 7 reveal that our initial
assumption to neglect the influence of the rod on the flow (see § 2) is correct. The rod
itself is clearly visible in the experimental snapshot of figure 5(a) and the PIV software
has correctly detected its downward movement, as can be seen in figure 7(a, b). From
the same figures we also conclude that outside a thin region around the rod the flow
remains unchanged. Most importantly, the outward flow at the edges of the disk
in figure 7(e), which is responsible for the expansion of the void, is unaffected by
the presence of the rod. This can be understood from the fact that below the disk
the radial flow component decays quickly towards the centre of the disk whereas the
vertical component in the centre is equal to the disk speed. As the fluid in the central
region hardly moves with respect to the disk, the presence of the rod has a negligible
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Figure 5. Comparison of the flow field obtained from experiments and boundary integral
simulations for a disk of radius hdisk = 20 mm which impacts with a velocity of V =1.0 m s−1

(Fr = 5.1). The figures show the flow field at τ = (a) 49 ms; (b) 25 ms; (c) 7 ms and (d ) 1 ms.
(The elapsed time from the moment of impact is given by t = (a) 60 ms, (b) 84 ms, (c) 102 ms
and (d ) 108 ms, respectively.) The left side of each image shows the flow field (overlaid
vectors) obtained from the experiment by four high-speed PIV recordings at 6000 frames s−1.
The four separate recordings were taken at different depths and combined to give the flow
field at high resolution. The recordings on the left side of each image also illustrate the degree
of reproducibility of the experiment, as the match between the four PIV recordings at different
depths obtained from four repetitions of the same experiment is perfect. For clarity only
0.7 % of the measured vectors is shown. The right side of each of the images shows the void
profile and the corresponding flow field (overlaid vectors) obtained from the boundary integral
calculations.

effect on the flow field. We conclude that the boundary layer of the rod makes no
contribution whatsoever to the flow field around the cavity.

This is confirmed by computing the azimuthal vorticity from the experimental data
(not shown). Non-zero vorticity is confined to a small region along the rod and near the
edge of the disk. The amount of vorticity in the bulk of the fluid fluctuates randomly
around zero and its magnitude falls within the measurement error everywhere, except
for the regions mentioned above. In addition we can conclude that, in spite of the
large Reynolds numbers present in the flow, turbulence does not play a role. This can
be traced back to the short duration of the impact event which does not allow for
turbulent structures to develop.
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Figure 6. The detailed flow field of figure 5(c) with every third vector in each of the two
directions shown, i.e. about 11 % of the measured vectors.

In figure 8 the experimental flow at the closure depth is compared with numerics up
to seven disk radii in radial direction in order to obtain a more quantitative measure
of the magnitude of the deviations between the numerical and experimental flow field.
We find this deviation to be typically of the order of 0.01 m s−1, but it can be slightly
larger if the flow velocity is small. In the region close to the free surface the small
deviations in the radial flow may be caused by its unsteady and nonlinear nature as is
discussed by Thoroddsen, Etoh & Takehara (2007). The larger inaccuracy at low flow
velocities in both components is generic to the PIV method and can most clearly be
seen to occur for τ =10.5 ms in figure 8(b). Overall, a very good agreement is found
between the far field flow in the numerics and experiments.

Both in the experiment and simulation we observe that during the expansion of
the void the magnitude of the outward radial flow falls off with the distance to
the symmetry axis (figure 8a). However, once the cavity starts to collapse inward
there will be a region around the cavity where the (radial) direction of the flow
is reversed and there will be an axisymmetric curved plane (manifold) where the
radial flow component vanishes. Here this happens between τ =30.5 and τ = 20.5 ms
(cf. figure 8a). In § 3.2 we will discuss in detail how this reversal of the radial flow
expresses itself in the radial dynamics of the cavity.

3. Modelling the cavity dynamics
In this section we will first derive a simple analytical model for the radial dynamics

of the transient cavity. Secondly, we will investigate the surrounding flow, which
enters the model through two of the free parameters and causes an asymmetry of the
collapse. In the last part of this section we compare the model to the radial dynamics
of the cavity observed in experiment and simulation.
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Figure 7. The axial (a–d ) and radial (e–h) components of the flow field representing the same
velocity data as in figure 5 and taken at the same times τ =49 ms (a,e), 25 ms (b,f ), 7 ms (c,g)
and 1 ms (d,h). (The elapsed time from the moment of impact is given by t = 60 ms (a,e), 84
ms (b,f ), 102 ms (c,g) and 108 ms (d,h), respectively.) (a–d ) Compare a contour plot of the
axial flow component from the experiment (left side of each image) with that of the numerics
(right side of each image). (e–h) Show a similar comparison in a contour plot of the radial
flow component from the experiment (left side of each image) and numerics (right side of
each image). Apart from the region where the rod is pulling down the disk in the experiment,
which is absent in the simulation, both components of the flow field show excellent agreement
between the experiments and numerical calculations.
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Figure 8. Radial (a) and axial (b) components of the flow at the depth of closure zcoll for
a disk of radius hdisk = 10 mm which impacts at a velocity of V = 1.0 m s−1 (Fr = 10.2). The
symbols show the result obtained from the PIV measurements at different times, �: τ = 30.5 ms;
�: τ =20.5 ms; �: τ = 10.5 ms and �: τ = 0.5 ms, and the lines are the corresponding numerical
results from the BI simulation. Note that these lines end on the cavity surface (solid dots). The
PIV data is an average of six subsequent measurements obtained from the high-speed PIV
recordings at 6000 frames s−1. In consequence, the vr and vz velocity components shown here
are the average over 1 ms.

3.1. A model for the radial cavity dynamics

The full analytical modelling of a cylindrical symmetric collapse of the transient cavity
presents the difficulty of a coupling between the free surface and the flow surrounding
the cavity. To tackle this difficulty we propose the convenient simplification of dividing
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Figure 9. The absolute value |vz/vr | of the ratio of the axial and radial components of the
flow field, from the same velocity data as in figure 5 and taken at the same times τ = (a)
49 ms, (b) 25 ms, (c) 7 ms and (d ) 1 ms. (The elapsed time from the moment of impact is
given by t = (a) 60 ms, (b) 84 ms, (c) 102 ms and (d ) 108 ms, respectively.) The region around
the minimal neck radius for which |vz/vr | � 1 grows as the pinch-off is approached, but it is
clear that this assumption is not valid along the whole cavity profile. The regions outside the
cavity without any filling (the larger white areas) indicate that |vz/vr | > 1.

the problem into a set of quasi two-dimensional problems. If the axial component of
the flow is small compared to the horizontal flow components, we can approximate the
flow as to be confined to the horizontal plane. In this way an equation for the collapse
of a two-dimensional bubble will suffice to describe the cavity dynamics at an arbitrary
depth.

Figure 9 shows the validity of the assumption vz/vr � 1 along the cavity profile. In
the early stages (figure 9a) this condition is not fulfilled and at the maximum cavity
radius this assumption will always be violated, since the radial flow vanishes here by
definition. However, as the cavity collapses the radial flow increases and there is a
rapidly growing region around the minimal radius in which vz/vr � 1.

To derive the equation for the collapse of a two-dimensional bubble we will closely
follow a derivation given in Oguz & Prosperetti (1993) and Lohse et al. (2004). The
argument starts by writing the Euler equation in cylindrical coordinates, and neglecting
the vertical flow component and its derivatives. This means that we assume the flow to
be quasi-two-dimensional at any depth along the cavity. The azimuthal components
can be ignored due to the axial symmetry, leaving the following equation:

∂vr

∂t
+ vr

∂vr

∂r
= − 1

ρ

∂p

∂r
, (3.1)
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where ρ denotes the density of the liquid. Under the above assumption of negligible vz

and thus ∂vz/∂z, the continuity equation and the boundary conditions on the surface
of the void lead to a second equation

rvr (r, t) = h(t)ḣ(t). (3.2)

Here, h(t) is the radius of the cavity and its derivative ḣ(t) the velocity of the cavity
wall at any depth z below the surface. Substituting (3.2) into (3.1) gives

∂

∂t

(
hḣ

r

)
+

∂

∂r

(
1

2
v2

r +
p

ρ

)
= 0. (3.3)

We can integrate this equation over r from the cavity wall h to a reference point
h∞, where the flow is taken to be quiescent. This integration yields a Rayleigh-like
equation for the void radius at a fixed depth z,[

d(hḣ)

dt

]
log

h

h∞
+

1

2
ḣ2 = gz. (3.4)

Here, we have used the fact that the pressure (p∞) driving the collapse of the cavity
is provided by the hydrostatic pressure ρgz, where z denotes the depth below the
fluid surface. Close to the collapse, the quantity h∞ can be interpreted as the length
scale related to the matching of an inner and outer flow regions. In the (inner) region
near the neck the induced flow looks like a collapsing cylinder as described by (3.4),
whereas in the (outer) region far from the neck, the flow resembles that of a dipole
(plus its image in the free surface). A complete description of the flow would require
the matching of these two regions, where h∞ would be determined in the process
as the cross-over length scale. h∞ would thus be expected to be of the order of a
typical length scale of the process, such as the distance of the cavity surface to the
plane where the radial flow vanishes (see figure 8a). Therefore, strictly speaking, h∞
is a function of the Froude number, the depth z and time. In the model presented
below we follow a different simplified route and for every Froude number set h∞ to a
constant value (a time-averaged value of its dynamics). This value then depends on
depth only through its Froude number dependence.

Note that the marked dependence on h∞ for this two-dimensional collapse is due to
the presence of the logarithmic term in (3.4). In the corresponding three-dimensional
problem of the bubble collapse the flow field vanishes much faster as 1/h2 and the
dependence on h∞ can in most cases be neglected.

We will now use (3.4) to analyse the radial dynamics from the initial impact of
the disk t0 to the time of closure of the cavity tcoll at arbitrary depth z. In order
to obtain an analytical approximate solution, we decompose the cavity dynamics
into three different stages, depicted schematically in figure 10. In this figure the
time intervals corresponding to the different stages are denoted as �texpa , �tctra and
�tcoll , respectively. In the first two stages, during �texpa and �tctra , the dynamics is
dominated by the hydrostatic pressure forcing and inertia. In these stages we observe
that the water is first pushed aside by the passing disk, creating an expanding void.
At the maximum radius hmax , the expansion is halted and the void starts to contract.
hmax is typically of the order of h0, e.g. for Fr = 3.4 and Fr = 200 we find, respectively,
hmax ≈ 1.3h0 and hmax ≈ 2.4h0. Since ḣ(tmax ) = 0, we can assume that ḣ(t) is small
during this expansion and contraction and we can neglect the second term of (3.4)
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Figure 10. Schematic representation of the three stages in the radial dynamics of the cavity at
a constant depth z. The first two stages (corresponding to the time interval �texpa + �tctra ) are
governed by a forcing of the flow by hydrostatic pressure. We can distinguish an expansion and
a contraction phase for which the model parameter h∞ differs considerably. In the third stage
(corresponding to �tcoll ) the collapsing void accelerates towards the singularity (pinch-off) in
which inertia takes over as the driving factor.

leading to [
d(hḣ)

dt

]
log

h

h∞
= gz. (3.5)

Since log(h/h∞) varies very slowly in the first regimes, we equate log(h/h∞) ≈
log(h(tmax )/h∞) and we solve (3.5) using h(tmax ) = hmax and ḣ(tmax ) = 0, leading to a
parabolic approximation for h2,

h2(z, t) =h2
max − gz

β
(t − tmax)

2 , (3.6)

with β ≡ − log(hmax/h∞). The above equation holds for both the expansion stage, the
time it takes for the void to grow from h0 to hmax , and the contraction stage, the time
it takes to shrink back to h0.

In the third stage, during �tcoll , the collapsing void accelerates towards the
singularity and inertia takes over as the only dominant factor driving the dynamics of
the cavity. This stage can be described using a different approximation to (3.4). Near
the collapse, h approaches zero, h∞ is typically very large and thus the logarithm
diverges. The only way (3.4) can remain valid is when the prefactor of the logarithm
vanishes. This means that

d(hḣ)

dt
=

1

2

d2(h2)

dt2
= 0. (3.7)

Integration gives the power law of the two-dimensional Rayleigh collapse (cf.
Bergmann et al. 2006)

h(t) =
√

C(tcoll − t)1/2. (3.8)

In § 3.3 the integration constant
√

C will be determined from continuity of h and ḣ.
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Figure 11. (a) The radial velocity component vr at depth of closure just prior to pinch-off
(when h = 0.05h0) multiplied by the radial distance r as a function of the same radial distance
for different Froude numbers. At the free surface the radial flow is equal to the wall velocity
(the last data point shown however is h = 0.1h0 and does not reach this limit.) The distance
rs where the radial velocity is zero and the flow is stagnant in radial direction is indicated by
the stars (*). The flow can be seen to resemble a radial sink flow more with increasing Froude
number as the minimum of vrr decreases with increasing Froude number. The inset contains
the radial flow velocity vr itself, to illustrate the increase of vr as r → 0. (b) The distance of
the point where the radial flow reverses sign to the symmetry axis, determined at the depth
of closure as a function of the normalized time remaining till closure τ = tcoll − t . Below the
curves the flow is directed inwards, above them it is directed outwards. The radial distances
of the flow reversal point at τ =0 in this figure correspond to the stars (*). The distance of
the point of flow reversal is related to the length scales hctra

∞ and h
expa
∞ , which are therefore

expected to behave similarly in time.

3.2. The influence of the flow on h∞

As an intermezzo in the exposition of the model we now turn to an important point,
namely, that there is a significantly different quality to the flow in the expansion and
the contraction stages. Figure 11 shows clearly what was hinted at in our discussion
of figure 8, namely, that in the expansion phase the outward radial flow simply decays
with the radial distance, whereas in the contraction phase the radial flow changes
sign at finite distance from the free surface. This is due to the fact that the fluid flows
outward until the cavity reaches its maximum radius hmax , from where it will start to
move inward, creating a reversed-flow region around the cavity wall which grows in
time. Although in both stages hydrostatic pressure is the dominant factor driving the
dynamics of the cavity, there is this dissimilarity in the surrounding flow which needs
to be incorporated into the model. To investigate the dynamics of this dissimilarity
in detail, we turn to the simulations from which we can obtain the flow field (used in
figures 11 and 12) with an arbitrarily fine resolution.

Figure 11(a) shows the radial flow component vr multiplied by the radial distance
r to the axis of symmetry at the depth of pinch-off just prior to the moment at which
the cavity pinches (when h = 0.05h0). On the free surface the radial flow is equal to
the wall velocity, vr (r = h) = ḣ, and locally it resembles a two-dimensional sink, the
strength of which falls off as 1/r . Therefore, if we multiply vr with r we eliminate the
geometrical contribution to the flow. For the lower Froude numbers of 3.4 and 5.1 the
radial flow component reverses direction at closure depth and time at some distance
rs (stars). At the higher Froude numbers (10.2 and 200) no such point is observed
within the numerical domain, which extends to 100 disk radii in the radial direction.
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Figure 12. The open circles show the path of the stagnation point of the flow for (a) Fr = 3.4
and (b) Fr = 10.2. For (a) the first observation of the stagnation point is made at τ = 61 ms
until 1 ms before closure at intervals of 3 ms. In (b) the first observation is made at τ = 35 ms
until 7 ms before closure at intervals of 1 ms. For clarity the time till closure is indicated
only for every second observation. The arrows in (a) illustrate the direction of the local flow
around the stagnation points in (a) and (b). Further more, the void profiles at the time of the
first and the last observations are shown. The depth of closure is indicated by the horizontal
dashed line.

This does not mean that such a flow reversal point is absent during the complete
time of the collapse, as can be seen in figure 11(b) where we plot the location of
the flow reversal point as a function of time. The radial flow reversal point comes
into existence at the wall of the void at the moment that the expanded cavity starts
to collapse and the flow direction is reversed inward. From then onwards, this point
travels away from the axis of symmetry as the collapse is approached (τ → 0). In the
same figure we also observe that for a higher Froude number the radial flow reversal
point travels outward much faster during the cavity collapse as compared to the low
Fr case.

The position of the radial flow reversal point at different depths describes a curve in
the (r ,z)-plane. Similarly, there is a curve at which the axial flow component changes
sign, as water flows in from above and below while the cavity collapses. These flow-
reversal curves can be characterized by a stagnation point (or saddle point) in the
(r ,z)-plane, which is the point where the two curves intersect and both the axial and
the radial velocity components change sign. This stagnation point corresponds to a
circle around the cavity in three dimensions. In figure 12 the path of this stagnation
point is shown for (a) Fr = 3.4 and (b) Fr = 10.2. For both simulations the stagnation
point not only moves away from the axis of symmetry as the pinch-off is approached,
but it is also seen to move down in the axial direction and at some point even to
cross the depth of closure. A similar path of the stagnation point is observed for all
the simulations of figure 11 and only at one instant during the collapse of the cavity
does the radial flow reversal point at closure depth truly coincide with the stagnation
point.

The above leads us to three observations which are relevant for our model of the
cavity collapse. (i) Since radial flow reversal at closure depth occurs when the cavity
starts to collapse, the character of the flow differs between the expansion and the
contraction stages. Since h∞ is the radial distance at which the flow can be assumed to
be quiescent (v = 0 and p = p∞ = ρgz) it is related to the structure of the surrounding
flow, and it is therefore justified to assume different values of h∞ in the respective
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stages. We will take h∞ ≡ hexpa
∞ in the expansion stage and h∞ ≡ hctra

∞ in the contraction
stage of the model. Just like h∞ in § 3.1, hexpa

∞ and hctra
∞ are set to a constant value,

representing the time-averaged behaviour of h∞ in each respective stage. The two
constants hexpa

∞ and hctra
∞ can be identified as the time average of a function h∞(t)

expressing the motion of the stagnation point in the flow which is continuously
moving outward during the contraction stage, leading to a markedly different value
of the constants in the two stages. (ii) As the distance of the radial flow reversal
during the contraction moves away faster at higher Froude number, presumably a
higher value for hctra

∞ needs to be taken for larger Froude numbers. (iii) In Bergmann
et al. (2006) we found that there are two scaling regimes for the neck radius, the first
regime where the neck radius scales as a pure power law of time (as in (3.8)), and the
second regime, where a logarithmic correction of time has to be taken into account.
The cross-over between the two regimes is given by the length scale h2

max/hctra
∞ . As we

find from figure 11(b), for all Froude numbers the distance of the radial flow reversal
increases as the pinch-off is approached. Although in theory we assume hctra

∞ to be
constant, in reality hctra

∞ thus increases as the pinch-off is approached. This means the
cross-over length scale h2

max/hctra
∞ decreases with time.

Therefore the time needed for the collapsing neck to decrease to h2
max/hctra

∞ will
be longer as compared to the assumption of a constant (initial) value for hctra

∞ and
may even never reach this second regime. The effect is stronger for increasing Froude
number, since the radial flow reversal point at closure depth moves away faster and
further at higher Froude number.

3.3. The free parameters of the model

In this section, we continue our derivation of a simplified model for the radial cavity
dynamics started in § 3.1. As argued in the previous subsection it is justified to assume
different (constant) values for h∞ during the expansion and contraction stages of the
void. We therefore introduce different values for β in (3.6), depending on whether we
are in the expansion or in the contraction stage

β =

{
βexpa ≡ − log(hmax(z)/h∞,expa) t < tmax

βctra ≡ − log(hmax(z)/h∞,ctra) t > tmax

. (3.9)

Note that with this definition βexpa and βctra are positive quantities as for both holds
h∞,expa, h∞,ctra � hmax . Secondly, the fact that β depends only logarithmically on h∞
furthermore justifies approximating the time-dependent quantity h∞(t) by its time
average h∞.

Now, to determine hmax , or rather the time it will take to get there from the time the
disk passes at t = treach , we need the radial velocity of the initial expansion at t = treach
(see figure 10). A reasonable assumption (and similar to the proposition of Duclaux
et al. 2007) is that the disk displaces water from underneath itself to the sides at a
velocity directly proportional to its downward velocity. Therefore, we have

ḣ(treach) = αexpaV . (3.10)

For the velocity at the end of the contraction phase at tcross = treach + �texpa + �tctra ,
we write in a similar fashion

ḣ(tcross) = −αctraV . (3.11)

Clearly, both αexpa and αctra are again positive quantities.
The analytical model for the radial cavity dynamics given by (3.6) and (3.8) thus has

four unknown parameters αexpa , βexpa , αctra and βctra . The value of C in (3.8) follows
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from the fact that the curve and its derivative in figure 10 should be continuous. We
assume the collapse regime starts at the end of the contraction phase, where we have
h(tcross ) = h0 and ḣ(tcross ) = −αctraV . From these conditions, the value of C is readily
obtained,

C = 2h0αctraV . (3.12)

However, for given αexpa , βexpa and βctra , the constant αctra is also uniquely determined
by the continuity of the trajectory and its derivative at h(tmax ) = hmax , which gives

αctra = αexpa

√
βexpa/βctra , (3.13)

and leaves only αexpa , βexpa and βctra to be determined.
Summarizing, the time evolution of the cavity at depth z is described by the

following three equations:

h(z, t) =

√
h2

max − gz

βexpa

(t − tmax)2 for treach < t � tmax , (3.14)

h(z, t) =

√
h2

max − gz

βctra

(t − tmax)2 for tmax < t � tcross , (3.15)

h(z, t) =
√

2h0αctraV
√

tcoll − t for tcross < t � tcoll , (3.16)

where the times treach , tmax , tcross and tcoll are readily related to the impact time t =0
(which will be done explicitly in § 4) and hmax is given by

hmax(z) = h0

√
1 + α2

expaβexpa

V 2

gz
, (3.17)

as can be easily derived, e.g. from (3.14) together with its boundary conditions
h(z, treach) = h0 and ḣ(z, treach) = αexpaV .

In the model described by (3.14)–(3.16) the acceleration of the cavity wall is
discontinuous at, e.g. t = tmax . This reflects the fact that the acceleration in the
expansion and contraction stages has been approximated by two (different) constants
which can be interpreted as the time averages of the continuously changing physical
acceleration of the cavity walls in the respective stages.

3.4. Validation of the model

We will now compare the dynamics of the radius of the void at closure depth with
the theoretical prediction of (3.6) and (3.8) to validate the model and quantify the
influence of the flow reversal on βexpa and βctra .

The parameter αctra is eliminated by relation (3.13), leaving the three parameters
αexpa , βexpa and βctra to match (3.14)–(3.16) to the radial dynamics of the cavity at
closure depth. Figure 13(a) shows the comparison between these fits (dashed line)
and the simulations (solid line) at two different Froude numbers of 3.4 and 200.
The approximation is found to be in excellent agreement throughout the collapse,
faithfully reproducing the maximum expansion of the cavity and the complete time
of collapse. In figure 14(a) we repeat the fitting routine described above for many
Froude numbers and find the parameters αexpa , βexpa and βctra as a function of the
Froude number. All are found to logarithmically depend on the Froude number (note
that a logarithmic scale has been used for Fr). For completeness we also plot the
derived quantity αctra , calculated from (3.13).

If in (3.14) and (3.15) the constants βexpa and βctra are set to 1 and therefore by
(3.13), αctra = αexpa , we arrive at the cavity dynamics proposed by Duclaux et al. (2007)
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Figure 13. (a) The time evolution of the radius of the cavity at closure depth for different
Froude numbers. The solid lines represent the simulation results and the dashed lines
correspond to a least square fit of the approximation given by (3.14)–(3.16) with the three free
parameters αexpa , βexpa and βctra . (b) The same numerical time evolution data as in (a) (solid
lines) are now approximated by the model proposed by Duclaux et al. (2007), which consists
of (3.14)–(3.15) with βexpa and βctra set to 1, leaving only αexpa as a free parameter for the least
squares fit (dashed lines). In both (a) and (b) time has been rescaled by a factor gzcoll/V h0 in
order to show the results for the two Froude numbers in a single plot.
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used in figure 13(a). All are found to logarithmically depend on the Froude number (note the
logarithmic scale for Fr). (b) The quantities

√
αexpaβexpa + αctraβctra and α2

expaβexpa calculated

from (a). Whereas
√

αexpaβexpa + αctraβctra is found to weakly depend on the Froude number,

α2
expaβexpa has a nearly constant value of 0.40 (horizontal dotted line). In comparison with√
αexpaβexpa + αctraβctra , the horizontal dashed line indicates the value C1 = 1.10 obtained from

the best fit to the closure depth data of figure 15.

for impacting spheres and cylinders. These dynamics are shown in figure 13(b) with
the only free parameter αexpa also determined by the least square fit to the data. This
approximation is seen to qualitatively reproduce the trend for the maximum expansion
and collapse time, but fails to capture the exact values. It also fails to capture the
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observed asymmetry in time around the maximum expansion. Our solution (3.14)–
(3.15) explicitly needs not be symmetric around the maximum expansion, since it
allows for different values of β at t < tmax and t > tmax .

To conclude this section we return to the first two observations we made at the
end of § 3.2 on the motion of the stagnation point and the plausible consequences
for h∞. (i) The flow reversal which occurs when the cavity starts to collapse indeed
introduces an asymmetry in the behaviour around the maximum expansion. This is
clearly observed in the radial dynamics of figure 13, especially for Fr = 3.4. (ii) As
the distance of the radial flow reversal during the collapse moves away faster at
higher Froude number (see figure 11b), we indeed have to introduce a larger hctra

∞
(corresponding to a larger βctra) for higher Froude number in the fit of figure 13(a)
to account for this effect.

4. Characteristics of the transient cavity
Now that we have derived a simplified model for the radial dynamics of the cavity,

we will use it, together with the simulations and experiments, to investigate the
following key characteristics of the transient cavity: (i) the depth of the pinch-off and
the depth of the disk at the moment of pinch-off (§ 4.1) and (ii) the amount of air
entrained through the cavity collapse (§ 4.2).

4.1. Closure depth

Following Glasheen & McMahon (1996), Gaudet (1998) and Duclaux et al. (2007)
we will characterize the shape of the cavity at pinch-off by the depth of closure zcoll ,
i.e. the depth at which the pinch-off takes place. To capture more information on
the full shape of the void, we will also investigate how zcoll relates to the total depth
of the cavity zdisk (tcoll ) = zdisk , coll at the time of collapse (or closure) (see the inset of
figure 15).

A comprehensive argument for the scaling of zcoll can be obtained by following a
similar procedure to the one outlined in Lohse et al. (2004) for the determination of
the closure depth after the impact of a steel ball on soft sand. The difference is that
whereas in sand one can assume that due to the compressibility of the material there is
hardly any outwards motion of the sand, here we are dealing with an incompressible
fluid and the outward expansion of the cavity needs to be taken into account.

The time interval between impact of the disk and collapse of the cavity �t = tcoll − t0
at any depth z consists of two main parts. First, the disk needs an amount of time
�treach to reach the depth z. Second, just after the disk passes there is the time �tvoid

it takes for the void to form, expand and collapse

�t =�treach + �tvoid . (4.1)

The first term equals �treach = z/V since the velocity of the disk is constant in the
experiment and simulation. In § 3 �tvoid was decomposed into three stages as is
schematically depicted in figure 10. The collapse time can thus be written as

�t = �treach + �texpa + �tctra + �tcoll︸ ︷︷ ︸
�tvoid

. (4.2)

To estimate these last three time scales at arbitrary depth z, we turn to our model for
the cavity dynamics (3.14)–(3.16).
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Figure 15. (a) Double logarithmic plot of the depth at which the void collapses zcoll and the
depth zdisk ,coll of the disk at collapse time for experiments with four different disk radii and
for the boundary integral simulations (open circles), all as a function of the Froude number.
Experiments in which a surface seal occurs during the collapse are indicated by shaded (light
grey) symbols, the experiments without a surface seal by black symbols. Here, a surface seal
is said to occur if at some point in time due to air suction the splash closes onto itself and
the cavity is completely sealed off. The experiments without a surface seal are found to agree
well with the numerically obtained values (open circles) and the theoretical prediction for
the scaling of zcoll/h0 = C1Fr1/2 (dashed line) and zdisk , coll/h0 = 2C1Fr1/2 (solid line), with
C1 = 1.10 obtained from a fit to the data of zcoll . The experiments for which a surface seal
occurs are seen to slightly deviate from this prediction. The best fit of Glasheen & McMahon
(1996) to their experimental data is indistinguishable from the solid line in this plot. (b) The
ratio of the depth of the disk at the time of pinch-off zdisk , coll and the pinch-off depth zcoll for
different disk radii as a function of the Froude number. The experiments without a surface
seal (black symbols) agree well with the numerical results (open circles). The ratio for the
numerical results and experiments without a surface seal lie close to the predicted value of 2
indicated by the dashed horizontal line. The experiments in which a surface seal occurs are
again indicated by the shaded (light grey) symbols and found to deviate more with increasing
Froude number for a fixed disk size. The inset shows the definition of the depths zcoll and
zdisk ,coll at the closure time.



Controlled impact of a disk on a water surface 403

If we combine conditions (3.10) and (3.11) with the time derivative of (3.14) and
(3.15), we readily obtain

�texpa = αexpaβexpa

h0V

gz
, (4.3)

�tctra = αctraβctra

h0V

gz
. (4.4)

Recall that αctra =αexpa(βexpa/βctra)
1/2. The radial collapse during �tcoll is in turn

described by the approximation of (3.16). Since h(tcross ) =h0 we find for this time
interval

�tcoll = tcoll − tcross =
1

2αctra

h0

V
. (4.5)

Collecting all the above time intervals, within the model the total amount of time
that passed from the impact of the disk until the collapse of the cavity at depth z is
given by

�t = �treach + �texpa + �tctra + �tcoll

=
z

V
+ (αexpaβexpa + αctraβctra)

h0V

gz
+

1

2αctra

h0

V
. (4.6)

Now, to find the closure depth zcoll , we need to determine at what depth the collapse
will occur first, which we can do by solving

d�t

dz
= 0. (4.7)

This gives

zcoll

h0

=
√

αexpaβexpa + αctraβctraFr1/2. (4.8)

In addition, the total depth of the disk at the time of collapse, zdisk (tcoll ) = zdisk , coll ,
can be obtained by substituting (4.8) into (4.6) to give zdisk , coll = V �t , or

zdisk, coll

h0

= 2
√

αexpaβexpa + αctraβctraFr1/2 +
1

2αctra

. (4.9)

When we compare these expressions with the experiments without a surface seal
(black symbols) and the numerical calculations (open circles) in figure 15(a) we find
a very good agreement with the prediction of (4.8). A fit to the data of zcoll gives
zcoll/h0 = C1Fr1/2, with C1 = 1.10. The agreement of the experiments in which a surface
seal occurs (shaded symbols) deteriorates for a fixed disk size with increasing Froude
number, since the surface seal becomes more disruptive at higher impact velocities.

In the same figure we find the experimental and numerical results for the total depth
of the disk at closure zdisk , coll . From the observed clear power-law scaling we conclude
that in the measurements we find no evidence for the constant 1/(2αctra) in (4.9). The
total depth of the void is found to scale as zdisk , coll/h0 = C2Fr1/2, with C2 = 2.49 close to
the expected value of C2 = 2C1 = 2.2 that follows from (4.8) and (4.9). The fact that the
closure depth and the total depth have the same power-law scaling Fr1/2 indicates
that the time from the initial impact of the disk to the time of closure of the cavity
does not depend on the velocity of the impact, since �t = zdisk , coll/V = C2

√
h0/g.

Alternatively, keeping the constant term in (4.9) within the model is equivalent to
keeping the last term in (4.6) and would add a 1/V -dependence to the closure time,
which vanishes for high Froude number.



404 R. Bergmann, D. van der Meer, S. Gekle, A. van der Bos and D. Lohse

0

–10

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–20

–30

–40

z 
(m

m
)

–50

–60

–70

–80

–90

–100
0 10 20 30

r (mm)

40 50

Figure 16. The absolute value |vz/vr | of the ratio of the axial and radial components of the
flow field, taken from the simulation at the moment of pinch-off. The disk of 30 mm radius
impacts at a constant velocity of 0.5 m s−1 (Fr ≈ 0.8). At this low Froude number the influence
of gravity causes vz to be of the order vr along most of the free surface. The regions outside
the cavity without any filling (the larger white areas) indicate |vz/vr | > 1.

This is in good agreement with the findings of Glasheen & McMahon (1996), who
experimentally observed the same scaling for the impact of a heavy disk on a water
surface with almost the same prefactor. Their result, namely C2 ≈ 2.3, is so close to
ours (C2 ≈ 2.2) that their best fit to the data would be indistinguishable from our
expectation as depicted in figure 15 (the solid line). The small difference may be
attributed to the fact that in the case of Glasheen & McMahon (1996) the velocity is
not constant during the impact and they define their Froude number with respect to
the time average of this velocity. Duclaux et al. (2007) also found the scaling of
�t (∝

√
h0/g) for impacting spheres and furthermore reported zdisk , coll/h0 =

2zcoll/h0 ∝ Fr1/2 in agreement with our observations.
To investigate the data of figure 15(a) more closely it is convenient to take the ratio

of zcoll/zdisk , coll (see figure 15b). According to (4.8) and (4.9), this ratio should scale as

zcoll/zdisk, coll = 2 +
1

2αctra

√
αexpaβexpa + αctraβctra

Fr−1/2 ≈ 2 (4.10)

in the limit of large Froude number. In figure 15(b) the ratio of zcoll/zdisk , coll in the
experiments without a surface seal (black symbols) and the numerical calculations
(open circles) are indeed close to the constant value of 2 (dashed black line), but
at lower Froude number it decreases slightly contrary to the proposed scaling by
the second term in (4.10). Although the second term of the ratio of (4.10) should
become relevant when the Froude number is considerably small, this is not observed
in figure 15(b). This can be understood by noting that in the limit of small Froude
number gravity becomes more important and our assumption of non-interacting fluid
layers breaks down. This is illustrated by figure 16 for Fr = 0.85, where vz/vr is found
to be of order 1 along most of the free surface. This is markedly different from
higher Froude numbers (see figure 9) for which the axial flow is only of the same
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order around the depth of maximal cavity expansion, i.e. when and where the radial
component vanishes. Thus at low Froude number the assumptions of (3.4) are violated
and thus (4.10) can no longer be taken to be valid. Figure 15(b) also illustrates once
more that the experiments with a surface seal (shaded symbols) deviate more and
more from the simulations without air as the Froude number increases.

The fits to the trajectories discussed in § 3.4 provide us with the parameters αexpa ,
βexpa and βctra (recall that αctra is given by (3.13)), and therewith with an independent

way of determining the proportionality constant
√

αexpaβexpa + αctraβctra of (4.8).
Repeating this fitting procedure for many impact velocities results in figure 14(b),
where

√
αexpaβexpa + αctraβctra is plotted as a function of log10 Fr. A weak (logarithmic)

dependence on the Froude number is revealed. It can also be seen that the value
C1 ≈ 1.10 of the proportionality constant in (4.8) found from the fit to the closure
depth data in figure 15 is consistent with the data when one wants to disregard the
Fr dependence.

4.2. Air entrainment

After pinch-off, an air bubble is entrapped, as is clearly visible in figures 1(b) and 2.
The (rescaled) volume of this bubble Vbubble/h3

0 is not only found to solely depend
on the Froude number, but also to exhibit close to power-law scaling behaviour. The
scaling law for the volume of the bubble observed in experiment and simulation is
found to be Vbubble/h3

0 ∝ Frλ, with λ= 0.78 (see figure 17a).
This is surprising, since for the impact of a liquid mass on a free surface the

volume of air entrained in the process scales with a different exponent Vbubble ∝ Fr1.0

(Prosperetti & Oguz 1997). In this section we will try to shed light onto the origin of
this scaling behaviour using our findings of § 4.1.

In § 4.1 it was found that the axial length of the enclosed bubble at pinch-off scales
roughly as (zcoll − zdisk , coll )/h0 ≈ 1.10 Fr1/2, if we ignore the weak-Froude-number
dependence of the prefactor

√
αexpaβexpa + αctraβctra (see figure 14b). Therefore, the

scaling of the axial length zcoll − zdisk , coll of the enclosed bubble cannot by itself
account for the observed scaling of Vbubble . The radial length scale hrad of the bubble
must therefore be Froude number dependent and should scale as

hrad

h0

∝
[

Vbubble

h2
0(zdisk,coll − zcoll)

]1/2

∝
[
Fr0.78

Fr0.50

]1/2

= Fr0.14. (4.11)

Now what would we expect based on our simplified model? The maximum radial
expansion of the cavity at any depth z is given by hmax (z) (see (3.17)). As the depth
zmax at which the radial size of the bubble is maximal is somewhere between the
closure depth zcoll and the depth of the disk at closure zdisk , coll , we have zmax ≈
(zcoll + zdisk , coll )/2 = (3/2)

√
αexpaβexpa + αctraβctraFr1/2. If we substitute this depth into

hmax (z) (3.17) we find

hrad ∝ hmax(zmax) ≈ h0

√
1 +

2α2
expaβexpa

3
√

αexpaβexpa + αctraβctra

Fr1/2

≈ h0

√
1 + 0.26 Fr1/2. (4.12)

In the last (approximate) equation we have used that
√

αexpaβexpa + αctraβctra ≈ 1.10

and α2
expaβexpa ≈ 0.40 (cf. figure 14b). If a power-law fit hrad/h0 vs Fr is enforced on

this dependence in the regime 2.5 < Fr < 250 one obtains the observed effective
exponent 0.14, i.e., hrad/h0 ∝ Fr0.14. Alternatively, by taking the square of (4.12) and



406 R. Bergmann, D. van der Meer, S. Gekle, A. van der Bos and D. Lohse

–0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g

1
0
(V

bu
bb

le
/h

03
)

30 mm

20 mm

40 mm

Simulation

–0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
–0.2

0

0.2

0.4

0.6

log10(Fr)

log10
((Vbubble

/(h0
3 Fr1

/2 ))
1/2 )

log10
(heff

/h0
)

log10
(hmax,coll/

h0
)

30 mm

20 mm

40 mm

Simulation

(a)

(b)

Figure 17. (a) The volume of the bubble Vbubble entrained during the collapse of the cavity
from experiments (shaded grey symbols) and simulations (black open circles), normalized by
the cubed disk radius h3

0, as a function of the Froude number in a double logarithmic plot.

The data suggest a power-law scaling Vbubble/h3
0 ∝ Frλ where a linear best fit through the

data between Fr = 2.5 and 250 gives λ≈ 0.78 (solid line, shifted for clarity). The dashed line
corresponds to model prediction (4.13). (b) Double logarithmic plot of three quantities that
measure the radial length scale of the entrapped air bubble. From bottom to top: the effective
(or average) radius heff of the bubble at pinch-off (4.14), the maximum radius of the bubble
hmax , coll at pinch-off and the square root of the bubble volume compensated for the expected

scaling of its vertical extension [Vbubble/h0Fr1/2]1/2, all compensated with the disk radius h0.
The dashed line is model prediction (4.12) and the solid line represents a power law with the
scaling exponent λ= 0.14 expected from (4.11).

multiplying with the vertical extension (zcoll − zdisk , coll ) of the bubble we find the
following prediction for the bubble volume:

Vbubble ∝ h3
0

(
1 + 0.26 Fr1/2

)
Fr1/2 . (4.13)

Clearly, the model predicts power-law scaling only in the limit of large Froude
numbers. Moreover, as in this limit Vbubble ∝ Fr, the scaling prediction is in agreement
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with the Prosperetti & Oguz (1997) result. Again, in the regime 2.5 <Fr < 250 the
effective exponent is 0.78.

We test the above prediction by looking at three different quantities that capture the
radial expansion of the cavity in experiment and numerics. The first is the effective, or
average, radius heff of the bubble which is computed directly from the experimental
and numerical cavity profiles (i.e. without any scaling assumption of the axial length
scale) at the pinch-off time by

h2

eff =
1

(zdisk, coll − zcoll)

∫ zcoll

zdisk, coll

h2(z) dz. (4.14)

The second quantity we look at is the maximal radius of the bubble hmax , coll at the
time of pinch-off which is a more direct measure of the expansion of the cavity.
hmax , coll can be directly observed from the cavity profile at the time of pinch-off as
the maximal radius for a depth between zdisk , coll and zcoll .

In figure 17(b) we compare these two quantities heff /h0 and hmax , coll/h0 with a third,
namely, the measured Vbubble compensated for the expected scaling behaviour of its
axial extension zdisk ,coll − zcoll ∝ h0Fr1/2, i.e. Vbubble/h3

0Fr1/2. All of these three quantities
follow the same trend, which is well described by prediction (4.12) from the model (the
dashed line in figure 17b), and close to the expected Fr0.14 scaling which is indicated
by the solid line. Finally, comparing the measured bubble volume Vbubble/h3

0 with
model prediction (4.13) in figure 17(a) (dashed line), we find excellent agreement.

5. Conclusions
In this paper we investigate the purely gravitationally induced collapse of a surface

cavity created by the controlled impact of a disk on a water surface. We find excellent
agreement between experiments and boundary integral simulations for the dynamics
of the interface, as well as for the flow surrounding the cavity. The topology and the
magnitude of the flow in the simulations agree perfectly with the PIV results.

In experiments it is found that a secondary air effect, the ‘surface seal’, has a
significant influence on the cavity shape at high Froude number. Since the surface
seal phenomenon (and its influence) is more pronounced at higher impact velocities,
it limits our experimental Froude number range. In the boundary integral simulations
the air was intentionally excluded, thus avoiding this limitation.

Because the velocity of the impacting disk is a control parameter in our experiments,
a simple theoretical argument based on the collapse of an infinite hollow cylinder
describes the key aspects of the transient cavity shape.

This model accurately reproduces the dynamics of the cavity including its maximal
expansion and total collapse time. It also captures the scaling for the depth of closure
and the total depth of the cavity at pinch-off, and predicts their ratio to be close to
2, where 2.1 is found in experiments and simulation.

There is a close similarity of this description to the cavity dynamics proposed by
Duclaux et al. (2007). However, by introducing the asymmetry between the radial
expansion and collapse, we find a better agreement between the theory and the
radial dynamics of the cavity. The fact that the flow is qualitatively different during
expansion of the cavity on the one hand and its contraction on the other is found
to be responsible for the asymmetry. Our approach is also conceptually different, as
Duclaux et al. (2007) take αexpa to be independent of the Froude number, while we
allow it to be weakly dependent on Froude and, more importantly, our description
includes the last stage of the collapse, which is solely driven by inertia.
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We find the volume of air entrained by the impact of the disk to behave as
Vbubble/h3

0 ∝ (1 + 0.26Fr1/2)Fr1/2. This dependence is set by the Froude dependence of
two length scales, namely the axial length scale, distance between the pinch-off point
and the disk, and the radial expansion of the cavity. Here we have excellent agreement
between the experimental and numerical findings and the prediction of the model.
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